A gut microbiome tactile teaching tool and guided-inquiry activity promotes student learning

Author:

Shoaf Parker T.,French Katie S.,Clifford Noah J.,McKenney Erin A.,Ott Laura E.

Abstract

The gut microbiome and its physiological impacts on human and animal health is an area of research emphasis. Microbes themselves are invisible and may therefore be abstract and challenging to understand. It is therefore important to infuse this topic into undergraduate curricula, including Anatomy and Physiology courses, ideally through an active learning approach. To accomplish this, we developed a novel tactile teaching tool with guided-inquiry (TTT-GI) activity where students explored how the gut microbiome ferments carbohydrates to produce short chain fatty acids (SCFAs). This activity was implemented in two sections of a large-enrollment Human Anatomy and Physiology course at a research intensive (R1) university in the Spring of 2022 that was taught using a hyflex format. Students who attended class in person used commonly available building toys to assemble representative carbohydrates of varying structural complexity, whereas students who attended class virtually made these carbohydrate structures using a digital learning tool. Students then predicted how microbes within the gut would ferment different carbohydrates into SCFAs, as well as the physiological implications of the SCFAs. We assessed this activity to address three research questions, with 182 students comprising our sample. First, we evaluated if the activity learning objectives were achieved through implementation of a pre-and post-assessment schema. Our results revealed that all three learning objectives of this activity were attained. Next, we evaluated if the format in which this TTT-GI activity was implemented impacted student learning. While we found minimal and nonsignificant differences in student learning between those who attended in-person and those who attended remotely, we did find significant differences between the two course sections, which differed in length and spacing of the activity. Finally, we evaluated if this TTT-GI approach was impactful for diverse students. We observed modest and nonsignificant positive learning gains for some populations of students traditionally underrepresented in STEM (first-generation students and students with one or more disabilities). That said, we found that the greatest learning gains associated with this TTT-GI activity were observed in students who had taken previous upper-level biology coursework.

Funder

National Science Foundation

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Reference116 articles.

1. Inquiry and the learning cycle approach;Abraham,2005

2. Covid-19 pandemic and online learning: the challenges and opportunities;Adedoyin;Interact. Learn. Environ.,2020

3. Race matters;Asai;Cells,2020

4. The microbiome as a human organ;Baquero;Clin. Microbiol. Infect.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3