Adherent-invasive E. coli – induced specific IgA limits pathobiont localization to the epithelial niche in the gut

Author:

Tanaka Rika,Imai Jin,Tsugawa Hitoshi,Eap Karl Bil,Yazawa Masaki,Kaneko Motoki,Ohno Masashi,Sugihara Kohei,Kitamoto Sho,Nagao-Kitamoto Hiroko,Barnich Nicolas,Matsushima Masashi,Suzuki Takayoshi,Kagawa Tatehiro,Nishizaki Yasuhiro,Suzuki Hidekazu,Kamada Nobuhiko,Hozumi Katsuto

Abstract

Background and aimAdherent-invasive E. coli (AIEC) has been identified as a pathobiont associated with Crohn’s disease (CD), that prefers to grow in inflammatory conditions. Although the colonization by AIEC is implicated in the progression of the disease and exacerbates inflammation in murine colitis models, the recognition and response of host immunity to AIEC remains elusive.MethodsAntibiotic treated female C57BL/6 mice were inoculated by commensal E. coli and LF82 AIEC strains. Luminal-IgA fractions were prepared from feces and their binding to AIEC and other strains was assessed to confirm specificity. IgA binding to isogenic mutant strains was performed to identify the functional molecules that are recognized by AIEC specific IgA. The effect of IgA on epithelial invasion of LF82 strain was confirmed using in vitro invasion assay and in vivo colonization of the colonic epithelium.ResultsPersistent colonization by AIEC LF82 induced secretion of luminal IgA, while commensal E. coli strain did not. Induced anti-LF82 IgA showed specific binding to other AIEC strains but not to the commensal, non-AIEC E. coli strains. Induced IgA showed decreased binding to LF82 strains with mutated adhesin and outer membrane proteins which are involved in AIEC – epithelial cell interaction. Consistently, LF82-specific IgA limited the adhesion and invasion of LF82 in cultured epithelial cells, which seems to be required for the elimination in the colonic epithelium in mice.ConclusionThese results demonstrate that host immunity selectively recognizes pathobiont E. coli, such as AIEC, and develop specific IgA. The induced IgA specific to pathobiont E. coli, in turn, contributes to preventing the pathobionts from accessing the epithelium.

Funder

Japan Society for the Promotion of Science

National Institutes of Health

Department of Defense

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3