Integrated transcriptome and metabolome profiling reveals mechanisms underlying the infection of Cytospora mali in “Jin Hong” branches

Author:

Zhao Jing,Guo Yuan,Li Zhengnan,Shi Yajun,Sun Pingping

Abstract

IntroductionValsa canker, caused by Cytospora mali, is a destructive disease in apple production. However, the mechanism by which apple defend against C. mali infection remains unclear.MethodsIn this study, the integrative transcriptional and metabolic analysis were used to investigate the responses of the ‘Jin Hong’ apple branches to the invasion of C. mali.Results and DiscussionResults showed that the differentially expressed genes were mainly enriched in the pathways of carbon metabolism, photosynthesis-antenna proteins, and biosynthesis of amino acids pathways. Additionally, the differentially accumulated metabolites were significantly enriched in aminoacyl-tRNA biosynthesis, fructose and mannose metabolism, and alanine, aspartate, and glutamate metabolism pathways. Conjoint analysis revealed that C. mali infection significantly altered 5 metabolic pathways, 8 highly relevant metabolites and 15 genes of apples. Among which the transcription factors WRKY and basic domain leucine zipper transcription family were induced, the α-linolenic acid and betaine were significantly accumulated in C. mali infected apple stems. This work presents an overview of the changes in gene expression and metabolic profiles in apple under the inoculation of C. mali, which may help to further screen out the mechanism of plant-pathogen interaction at the molecular level.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Reference58 articles.

1. Plant bZIP transcription factors responsive to pathogens: a review;Alves;Int. J. Mol. Sci.,2013

2. The chemical diversity and biological activities of phytoalexins;Bizuneh;Adv. Tradit. Med.,2020

3. Fast regularized canonical correlation analysis;Cruz-Cano;Comput. Stat. Data Anal.,2014

4. ProteoWizard: open source software for rapid proteomics tools development;Darren;Bioinformatics (Oxford, England),2008

5. The various roles of fatty acids;De Carvalho;Molecules (Basel, Switzerland),2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3