Network analysis reveals microbe-mediated impacts of aeration on deep sediment layer microbial communities

Author:

Wang Zhenyu,Liu Feifei,Li Enze,Yuan Yongqiang,Yang Yonggang,Xu Meiying,Qiu Rongliang

Abstract

Over-aeration is a common remediation strategy for black and odorous water bodies, in which oxygen is introduced to impact aquatic microbial communities as an electron acceptor of high redox potential. In this study, black-odorous freshwater sediments were cultured for 9 weeks under aeration to investigate microbial covariations at different depths and time points. Based on community 16S rRNA gene sequencing, the microbial covariations were visualized using phylogenetic microbial ecological networks (pMENs). In the spatial scale, we identified smaller and more compact pMENs across all layers compared with the anaerobic control sediments, in terms of network size, average node connectivity, and modularity. The aerated middle layer had the most connectors, the least module hubs, a network hub, shorter average path length, and predominantly positive covariations. In addition, a significant sulfate accumulation in the aerated middle layer indicated the most intense sulfide oxidation, possibly because aeration prompted sediment surface Desulfobulbaceae, known as cable bacteria, to reach the middle layer. In the time scale, similarly, aeration led to smaller pMEN sizes and higher portions of positive covariations. Therefore, we conclude that elevated dissolved oxygen at the water-sediment interface may impact not only the surface sediment but also the subsurface and/or deep sediment microbial communities mediated by microorganisms, particularly by Desulfobulbaceae.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3