Reducing Phenanthrene Contamination in Trifolium repens L. With Root-Associated Phenanthrene-Degrading Bacterium Diaphorobacter sp. Phe15

Author:

Zhao Hui,Gu Yujun,Liu Xiangyu,Liu Juan,Waigi Michael Gatheru

Abstract

Some root-associated bacteria could degrade polycyclic aromatic hydrocarbons (PAHs) in contaminated soil; however, their dynamic distribution and performance on root surface and in inner plant tissues are still unclear. In this study, greenhouse container experiments were conducted by inoculating the phenanthrene-degrading bacterium Diaphorobacter sp. Phe15, which was isolated from root surfaces of healthy plants contaminated with PAHs, with the white clover (Trifolium repens L.) via root irrigation or seed soaking. The dynamic colonization, distribution, and performance of Phe15 in white clover were investigated. Strain Phe15 could efficiently degrade phenanthrene in shaking flasks and produce IAA and siderophore. After cultivation for 30, 40, and 50 days, it could colonize the root surface of white clover by forming aggregates and enter its inner tissues via root irrigation or seed soaking. The number of strain Phe15 colonized on the white clover root surfaces was the highest, reaching 6.03 Log CFU⋅g–1 FW, followed by that in the roots and the least in the shoots. Colonization of Phe15 significantly reduced the contents of phenanthrene in white clover; the contents of phenanthrene in Phe15-inoculated plants roots and shoots were reduced by 29.92–43.16 and 41.36–51.29%, respectively, compared with the Phe15-free treatment. The Phe15 colonization also significantly enhanced the phenanthrene removal from rhizosphere soil. The colonization and performance of strain Phe15 in white clove inoculated via root inoculation were better than seed soaking. This study provides the technical support and the resource of strains for reducing the plant PAH pollution in PAH-contaminated areas.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rhizomicrobiome dynamics: A promising path towards environmental contaminant mitigation through bioremediation;Journal of Environmental Chemical Engineering;2024-04

2. Flexible catabolism of monoaromatic hydrocarbons by anaerobic microbiota adapting to oxygen exposure;Journal of Hazardous Materials;2024-01

3. Endophytic fungi: perspectives for microbial engineering;Microbial Biostimulants for Plant Growth and Abiotic Stress Amelioration;2024

4. Strip intercropping with local crops increased Aconitum carmichaeli yield and soil quality;Frontiers in Plant Science;2023-03-03

5. Remediation of Persistent Organic Pollutants Using Advanced Techniques;Emerging Contaminants and Associated Treatment Technologies;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3