Recurrent Potential G-Quadruplex Sequences in Archaeal Genomes

Author:

Chashchina Galina V.,Shchyolkina Anna K.,Kolosov Simon V.,Beniaminov Artemy D.,Kaluzhny Dmitry N.

Abstract

Evolutionary conservation or over-representation of the potential G-quadruplex sequences (PQS) in genomes are usually considered as a sign of the functional relevance of these sequences. However, uneven base distribution (GC-content) along the genome may along the genome may result in seeming abundance of PQSs over average in the genome. Apart from this, a number of other conserved functional signals that are encoded in the GC-rich genomic regions may inadvertently result in emergence of G-quadruplex compatible sequences. Here, we analyze the genomes of archaea focusing our search to repetitive PQS (rPQS) motifs within each organism. The probability of occurrence of several identical PQSs within a relatively short archaeal genome is low and, thus, the structure and genomic location of such rPQSs may become a direct indication of their functionality. We have found that the majority of the genomes of Methanomicrobiaceae family of archaea contained multiple copies of the interspersed highly similar PQSs. Short oligonucleotides corresponding to the rPQS formed the G-quadruplex (G4) structure in presence of potassium ions as demonstrated by circular dichroism (CD) and enzymatic probing. However, further analysis of the genomic context for the rPQS revealed a 10–12 nt cytosine-rich track adjacent to 3'-end of each rPQS. Synthetic DNA fragments that included the C-rich track tended to fold into alternative structures such as hairpin structure and antiparallel triplex that were in equilibrium with G4 structure depending on the presence of potassium ions in solution. Structural properties of the found repetitive sequences, their location in the genomes of archaea, and possible functions are discussed.

Funder

Russian Science Foundation

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3