Diversity Shifts in the Root Microbiome of Cucumber Under Different Plant Cultivation Substrates

Author:

Zhou Fangyuan,Wu Xiaoqing,Gao Yunxiao,Fan Susu,Zhou Hongzi,Zhang Xinjian

Abstract

Application of plant artificial cultivation substrates lead to alteration of rhizosphere environment. Whether this alteration could lead to root microbiome variation was limitedly investigated. This work aims to determine the diversity shifts in the root microbiome of cucumber under different plant cultivation substrates and predict corresponding function of these different root bacterial microbiota. Cucumber root samples cultivated with two artificial cultivation substrates and greenhouse soils were prepared. Subsequently, high throughput sequencing and bioinformatics analysis were applicated to compare the root bacterial diversity of cucumber cultivated in different substrates and their corresponding function. In total, 311,039 sequences were obtained, and they were annotated to 42 operational taxonomic units (OTUs), belonging to 28 genera, 18 families, 12 orders, four classes, and three phyla. The α and β diversity of samples from the two cultivation substrates and greenhouse soils were significantly different. Only 2–3 bacterial species were found to be discrepancy between cucumber root samples from artificial cultivation substrates and from greenhouse soils. The relative abundance of genus Asticcacaulis, Methylophilus, Massilia, Dyella, and Devosia in samples of artificial cultivation substrates was significantly higher than that of soils, while the relative abundance of genus Phenylobacterium, Noviherbaspirillum, and Arenimonas was significantly lower than that of soils. Besides, compared to cucumber root bacterial community cultivated in soils, the abundance of synthetic pathways for flavonoids and flavonols, bile acids, indole alkaloids, lactose, and neolactose increased by 41.6-, 28.7-, 5.9-, and 5.5-fold, respectively, in the bacterial community of the substrate 1-cultivated roots, and the abundance of clavulanic acid, receptor interaction, sesquiterpenoid, bile acid, flavonoid and flavonol, indole alkaloid, lactose, and neolactose synthetic pathways increased by 42.3-, 32.4-, 32.4-, 13.9-, 10.3-, 6.3-, and 5.2-fold, respectively, in the bacterial community of the substrate two-cultivated roots. This paper verified the diversity shifts in the root microbiome of cucumber under different plant cultivation substrates. Besides, the corresponding function difference of these different root bacterial microbiota was predicted. This work would provide theoretical support for discovering microbial resources and building artificial microbial flora.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3