Biological control of the native endophytic fungus Pochonia chlamydosporia from the root nodule of Dolichos lablab on Fusarium wilt of banana TR4

Author:

Zhou Yunfan,Yang Limei,Xu Shengtao,Li Shu,Zeng Li,Shang Hui,Li Xundong,Fan Huacai,Zheng Si-Jun

Abstract

Fusarium wilt of banana caused by Fusarium oxysporum f. sp. cubense, Tropical Race 4 (TR4) is a soil-borne disease, and it is devastating. At present, the biological control using antagonistic microorganisms to mitigate TR4 is one of the best strategies as a safe and green way. Yunnan has abundant and diverse microbial resources. Using the dual-culture method, the antagonistic endophytic fungi against TR4 were isolated and screened from the root nodule of Dolichos lablab. The effect of the highest antagonistic activity strain on the morphology of the TR4 mycelium was observed using the scanning electron microscope. According to morphological characteristics and sequence analysis, the strain was identified. The biocontrol effect and plant growth promotion were investigated by greenhouse pot experiment. Using the confocal laser scanning microscope and the real-time fluorescence quantitative PCR, the dynamics of TR4 infestation and the TR4 content in banana plant roots and corms would also be detected. In this study, 18 native endophytic fungi were isolated from a root nodule sample of Dolichos lablab in the mulch for banana fields in Yuxi, Yunnan Province, China. The YNF2217 strain showed a high antagonistic activity against TR4 in plate confrontation experiments, and the inhibition rate of YNF2217 is 77.63%. After TR4 culture with YNF2217 for 7 days in plate confrontation experiments, the morphology of the TR4 mycelium appeared deformed and swollen when observed under a scanning electron microscope. According to morphological characteristics and sequence analysis, the strain YNF2217 was identified as Pochonia chlamydosporia. In the greenhouse pot experiment, the biocontrol effect of YNF2217 fermentation solution on TR4 was 70.97% and 96.87% on banana plant leaves and corms, respectively. Furthermore, YNF2217 significantly promoted the growth of banana plants, such as plant height, leaf length, leaf width, leaf number, pseudostem girth, and both the aboveground and underground fresh weight. Observations of TR4 infestation dynamics in banana roots and corms, along with real-time fluorescence quantitative PCR, verified that YNF2217 inoculation could significantly reduce the TR4 content. Therefore, YNF2217 as P. chlamydosporia, which was found first time in China and reported here, is expected to be an important new fungal resource for the green control of Fusarium wilt of banana in the future.

Publisher

Frontiers Media SA

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3