Functional Characterization of a L-2-Haloacid Dehalogenase From Zobellia galactanivorans DsijT Suggests a Role in Haloacetic Acid Catabolism and a Wide Distribution in Marine Environments

Author:

Grigorian Eugénie,Groisillier Agnès,Thomas François,Leblanc Catherine,Delage Ludovic

Abstract

L-2-halocid dehalogenases (L-2-HADs) have been mainly characterized from terrestrial polluted environments. By contrast, knowledge is still scarce about their role in detoxification of predominant halocarbons in marine environments. Here, phylogenetic analyses showed a wide diversity of homologous L-2-HADs, especially among those belonging to marine bacteria. Previously characterized terrestrial L-2-HADs were part of a monophyletic group (named group A) including proteins of terrestrial and marine origin. Another branch (named group B) contained mostly marine L-2-HADs, with two distinct clades of Bacteroidetes homologs, closely linked to Proteobacteria ones. This study further focused on the characterization of the only L-2-HAD from the flavobacterium Zobellia galactanivorans DsijT (ZgHAD), belonging to one of these Group B clades. The recombinant ZgHAD was shown to dehalogenate bromo- and iodoacetic acids, and gene knockout in Z. galactanivorans revealed a direct role of ZgHAD in tolerance against both haloacetic acids. Analyses of metagenomic and metatranscriptomic datasets confirmed that L-2-HADs from group A were well-represented in terrestrial and marine bacteria, whereas ZgHAD homologs (group B L-2-HADs) were mainly present in marine bacteria, and particularly in host-associated species. Our results suggest that ZgHAD homologs could be key enzymes for marine Bacteroidetes, by conferring selective advantage for the recycling of toxic halogen compounds produced in particular marine habitats, and especially during interactions with macroalgae.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3