Octocorals in the Gulf of Aqaba exhibit high photosymbiont fidelity

Author:

Liberman Ronen,Benayahu Yehuda,Huchon Dorothée

Abstract

Symbiotic associations, widespread in terrestrial and marine ecosystems, are of considerable ecological importance. Many tropical coral species are holobionts, formed by the obligate association between a cnidarian host and endosymbiotic dinoflagellates of the family Symbiodiniaceae. The latter are abundant on coral reefs from very shallow water down to the upper mesophotic zone (30–70 m). The research on scleractinians has revealed that the photosymbiont lineages present in the cnidarian host play an important role in the coral’s ability to thrive under different environmental conditions, such as light regime and temperature. However, little is known regarding octocoral photosymbionts, and in particular regarding those found deeper than 30 m. Here, we used ribosomal (ITS2) and chloroplast (23S) markers to uncover, for the first time, the dominant Symbiodiniaceae taxa present in 19 mesophotic octocoral species (30–70 m depth) from the Gulf of Aqaba/Eilat (northern Red Sea). In addition, using high-throughput sequencing of the ITS2 region we characterized both the dominant and the rare Symbiodiniaceae lineages found in several species across depth. The phylogenetic analyses of both markers were in agreement and revealed that most of the studied mesophotic octocorals host the genus Cladocopium. Litophyton spp. and Klyxum utinomii were exceptions, as they harbored Symbiodinium and Durusdinium photosymbionts, respectively. While the dominant algal lineage of each coral species did not vary across depth, the endosymbiont community structure significantly differed between host species, as well as between different depths for some host species. The findings from this study contribute to the growing global-catalogue of Cnidaria-Symbiodiniaceae associations. Unravelling the Symbiodiniaceae composition in octocoral holobionts across environmental gradients, depth in particular, may enable a better understanding of how specialized those associations are, and to what extent coral holobionts are able to modify their photosymbionts.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3