A Combined Metagenomics and Metatranscriptomics Approach to Unravel Costa Rican Cocoa Box Fermentation Processes Reveals Yet Unreported Microbial Species and Functionalities

Author:

Verce Marko,Schoonejans Jorn,Hernandez Aguirre Carlos,Molina-Bravo Ramón,De Vuyst Luc,Weckx Stefan

Abstract

Cocoa fermentation is the first step in the post-harvest processing chain of cocoa and is important for the removal of the cocoa pulp surrounding the beans and the development of flavor and color precursors. In the present study, metagenomic and metatranscriptomic sequencing were applied to Costa Rican cocoa fermentation processes to unravel the microbial diversity and assess the function and transcription of their genes, thereby increasing the knowledge of this spontaneous fermentation process. Among 97 genera found in these fermentation processes, the major ones were Acetobacter, Komagataeibacter, Limosilactobacillus, Liquorilactobacillus, Lactiplantibacillus, Leuconostoc, Paucilactobacillus, Hanseniaspora, and Saccharomyces. The most prominent species were Limosilactobacillus fermentum, Liquorilactobacillus cacaonum, and Lactiplantibacillus plantarum among the LAB, Acetobacter pasteurianus and Acetobacter ghanensis among the AAB, and Hanseniaspora opuntiae and Saccharomyces cerevisiae among the yeasts. Consumption of glucose, fructose, and citric acid, and the production of ethanol, lactic acid, acetic acid, and mannitol were linked to the major species through metagenomic binning and the application of metatranscriptomic sequencing. By using this approach, it was also found that Lacp. plantarum consumed mannitol and oxidized lactic acid, that A. pasteurianus degraded oxalate, and that species such as Cellvibrio sp., Pectobacterium spp., and Paucilactobacillus vaccinostercus could contribute to pectin degradation. The data generated and results presented in this study could enhance the ability to select and develop appropriate starter cultures to steer the cocoa fermentation process toward a desired course.

Funder

Vrije Universiteit Brussel

Fonds Wetenschappelijk Onderzoek

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3