PCB-77 biodegradation potential of biosurfactant producing bacterial isolates recovered from contaminated soil

Author:

Sandhu Monika,Paul Atish T.,Proćków Jarosław,de la Lastra José Manuel Pérez,Jha Prabhat N.

Abstract

Polychlorinated biphenyls (PCBs) are persistent organic pollutants widely distributed in the environment and possess deleterious health effects. The main objective of the study was to obtain bacterial isolates from PCB-contaminated soil for enhanced biodegradation of PCB-77. Selective enrichment resulted in the isolation of 33 strains of PCB-contaminated soil nearby Bhilai steel plant, Chhattisgarh, India. Based on the prominent growth using biphenyl as the sole carbon source and the confirmation of its degradation by GC-MS/MS analysis, four isolates were selected for further study. The isolates identified by 16S rRNA gene sequencing were Pseudomonas aeruginosa MAPB-2, Pseudomonas plecoglossicida MAPB-6, Brucella anthropi MAPB-9, and Priestia megaterium MAPB-27. The isolate MAPB-9 showed a degradation of 66.15% biphenyl, while MAPB-2, MAPB-6, and MAPB-27 showed a degradation of 62.06, 57.02, and 56.55%, respectively in 48 h. Additionally, the degradation ability of these strains was enhanced with addition of co-metabolite glucose (0.2%) in the culture medium. Addition of glucose showed 100% degradation of biphenyl by MAPB-9, in 48 h, while MAPB-6, MAPB-2, and MAPB-27 showed 97.1, 67.5, and 53.3% degradation, respectively as analyzed by GC-MS/MS. Furthermore, in the presence of inducer, PCB-77 was found to be 59.89, 30.49, 27.19, and 4.43% degraded by MAPB-6, MAPB-9, MAPB-2, and MAPB-27, respectively in 7 d. The production of biosurfactants that aid in biodegradation process were observed in all the isolates. This was confirmed by ATR-FTIR analysis that showed the presence of major functional groups (CH2, CH3, CH, = CH2, C–O–C, C-O) of the biosurfactant. The biosurfactants were further identified by HPTLC and GC-MS/MS analysis. Present study is the first to report PCB-77 degradation potential of Pseudomonas aeruginosa, B. anthropi, Pseudomonas plecoglossicida, and Priestia megaterium. Similarly, this is the first report on Pseudomonas plecoglossicida and Priestia megaterium for PCB biodegradation. Our results suggest that the above isolates can be used for the biodegradation of biphenyl and PCB-77 in PCB-contaminated soil.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3