The Virulence Factor p25 of Beet Necrotic Yellow Vein Virus Interacts With Multiple Aux/IAA Proteins From Beta vulgaris: Implications for Rhizomania Development

Author:

Muellender Maximilian M.,Savenkov Eugene I.,Reichelt Michael,Varrelmann Mark,Liebe Sebastian

Abstract

Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) is characterized by excessive lateral root (LR) formation. Auxin-mediated degradation of Aux/IAA transcriptional repressors stimulates gene regulatory networks leading to LR organogenesis and involves several Aux/IAA proteins acting at distinctive stages of LR development. Previously, we showed that BNYVV p25 virulence factor interacts with BvIAA28, a transcriptional repressor acting at early stages of LR initiation. The evidence suggested that p25 inhibits BvIAA28 nuclear localization, thus, de-repressing transcriptional network leading to LR initiation. However, it was not clear whether p25 interacts with other Aux/IAA proteins. Here, by adopting bioinformatics, in vitro and in vivo protein interaction approaches we show that p25 interacts also with BvIAA2 and BvIAA6. Moreover, we confirmed that the BNYVV infection is, indeed, accompanied by an elevated auxin level in the infected LRs. Nevertheless, expression levels of BvIAA2 and BvIAA6 remained unchanged upon BNYVV infection. Mutational analysis indicated that interaction of p25 with either BvIAA2 or BvIAA6 requires full-length proteins as even single amino acid residue substitutions abolished the interactions. Compared to p25-BvIAA28 interaction that leads to redistribution of BvIAA28 into cytoplasm, both BvIAA2 and BvIAA6 remained confined into the nucleus regardless of the presence of p25 suggesting their stabilization though p25 interaction. Overexpression of p25-interacting partners (BvIAA2, BvIAA6 and BvIAA28) in Nicotiana benthamiana induced an auxin-insensitive phenotype characterized by plant dwarfism and dramatically reduced LR development. Thus, our work reveals a distinct class of transcriptional repressors targeted by p25.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3