Understory species composition mediates soil greenhouse gas fluxes by affecting bacterial community diversity in boreal forests

Author:

Duan Beixing,Xiao Ruihan,Cai Tijiu,Man Xiuling,Ge Zhaoxin,Gao Minglei,Mencuccini Maurizio

Abstract

IntroductionPlant species composition in forest ecosystems can alter soil greenhouse gas (GHG) budgets by affecting soil properties and microbial communities. However, little attention has been paid to the forest types characterized by understory vegetation, especially in boreal forests where understory species contribute significantly to carbon and nitrogen cycling.MethodIn the present study, soil GHG fluxes, soil properties and bacterial community, and soil environmental conditions were investigated among three types of larch forest [Rhododendron simsii-Larix gmelinii forest (RL), Ledum palustre-Larix gmelinii forest (LL), and Sphagnum-Bryum-Ledum palustre-Larix gmelinii forest (SLL)] in the typical boreal region of northeast China to explore whether the forest types characterized by different understory species can affect soil GHG fluxes.ResultsThe results showed that differences in understory species significantly affected soil GHG fluxes, properties, and bacterial composition among types of larch forest. Soil CO2 and N2O fluxes were significantly higher in LL (347.12 mg m−2 h−1 and 20.71 μg m−2 h−1) and RL (335.54 mg m−2 h−1 and 20.73 μg m−2 h−1) than that in SLL (295.58 mg m−2 h−1 and 17.65 μg m−2 h−1), while lower soil CH4 uptake (−21.07 μg m−2 h−1) were found in SLL than in RL (−35.21 μg m−2 h−1) and LL (−35.85 μg m−2 h−1). No significant differences between LL and RL were found in soil CO2, CH4, and N2O fluxes. Soil bacterial composition was mainly dominated by Proteobacteria, Actinobacteria, Acidobacteria, and Chloroflexi among the three types of larch forest, while their abundances differed significantly. Soil environmental variables, soil properties, bacterial composition, and their interactions significantly affected the variations in GHG fluxes with understory species. Specifically, structural equation modeling suggested that soil bacterial composition and temperature had direct close links with variations in soil GHG fluxes among types of larch forest. Moreover, soil NO3−N and NH4+ − N content also affected soil CO2, CH4, and N2O fluxes indirectly, via their effects on soil bacterial composition.DiscussionOur study highlights the importance of understory species in regulating soil GHG fluxes in boreal forests, which furthers our understanding of the role of boreal forests in sustainable development and climate change mitigation.

Funder

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3