The dependent correlation between soil multifunctionality and bacterial community across different farmland soils

Author:

Liu Jing,Gul Wazir Zafran,Hou Guo-Qin,Wang Gui-Zhen,Rong Fang-Xu,Xu Yu-Zhi,Liu Kai,Li Ming-Yue,Liu Ai-Ju,Liu Hong-Liang

Abstract

IntroductionMicroorganisms play a critical role in soil biogeochemical cycles, but it is still debated whether they influence soil biogeochemical processes through community composition and diversity or not. This study aims to investigate variation in bacterial community structure across different soils and its correlation to soil multifunctionality. Soil samples were collected from five typical farmland zones along distinct climatic gradients in China.MethodsThe high-throughput sequencing (Illumina MiSeq) of 16S rRNA genes was employed to analyze bacterial community composition in each soil sample. Multivariate analysis was used to determine the difference in soil properties, microbial community and functioning, and their interactions.ResultsCluster and discrimination analysis indicated that bacterial community composition was similar in five tested soil samples, but bacterial richness combined with soil enzyme activities and potential nitrification rate (PNR) contributed most to the differentiations of soil samples. Mantel test analysis revealed that bacterial community composition and richness were more significantly shaped by soil nutrient conditions and edaphic variables than bacterial diversity. As for soil multifunctionality, soil microbial community level physiological profiles were little affected by abiotic and biotic factors, while soil enzymes and PNR were also significantly related to bacterial community composition and richness, in addition to soil N and P availability.ConclusionCumulatively, soil enzymes’ activities and PNR were greatly dependent on bacterial community composition and richness not diversity, which in turn were greatly modified by soil N and P availability. Therefore, in the future it should be considered for the role of fertilization in the modification of bacterial community and the consequent control of nutrient cycling in soil.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Reference48 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3