Rhizosphere and Straw Return Interactively Shape Rhizosphere Bacterial Community Composition and Nitrogen Cycling in Paddy Soil

Author:

Zhao Ya-Hui,Wang Ning,Yu Meng-Kang,Yu Jian-Guang,Xue Li-Hong

Abstract

Currently, how rice roots interact with straw return in structuring rhizosphere communities and nitrogen (N) cycling functions is relatively unexplored. In this study, paddy soil was amended with wheat straw at 1 and 2% w/w and used for rice growth. The effects of the rhizosphere, straw, and their interaction on soil bacterial community composition and N-cycling gene abundances were assessed at the rice maturity stage. For the soil without straw addition, rice growth, i.e., the rhizosphere effect, significantly altered the bacterial community composition and abundances of N-cycling genes, such as archaeal and bacterial amoA (AOA and AOB), nirK, and nosZ. The comparison of bulk soils between control and straw treatments showed a shift in bacterial community composition and decreased abundance of AOA, AOB, nirS, and nosZ, which were attributed to sole straw effects. The comparison of rhizosphere soils between control and straw treatments showed an increase in the nifH gene and a decrease in the nirK gene, which were attributed to the interaction of straw and the rhizosphere. The number of differentially abundant genera in bulk soils between control and straw treatments was 13–23, similar to the number of 16–22 genera in rhizosphere soil between control and straw treatment. However, the number of genera affected by the rhizosphere effect was much lower in soil amended with straw (3–4) than in soil without straw addition (9). Results suggest possibly more pronounced impacts of straw amendments in shaping soil bacterial community composition.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3