Author:
Yang Xuechen,Song Wenzheng,Yang Xue,Yang Tianxue,Bao Wenqing,Wang Chengliang,Li Junqin,Zhong Shangzhi,Jiang Qi,Li Lu-Jun,Sun Wei
Abstract
It is known that the dynamics of multiple ecosystem functions (i. e., multifunctionality) are positively associated with microbial diversity and/or biodiversity. However, how the relationship between microbial species affects ecosystem multifunctionality remains unclear, especially in the case of changes in precipitation patterns. To explore the contribution of biodiversity and microbial co-occurrence networks to multifunctionality, we used rainfall shelters to simulate precipitation enhancement in a cold steppe in Northeast China over two consecutive growing seasons. We showed that an increased 50% precipitation profoundly reduced bacterial diversity and multidiversity, while inter-annual differences in precipitation did not shift microbial diversity, plant diversity, or multidiversity. Our analyses also revealed that increased annual precipitation significantly increased ecosystem, soil, nitrogen, and phosphorous cycle multifunctionality. Neither increased precipitation nor inter-annual differences in precipitation had a significant effect on carbon cycle multifunctionality, probably due to the relatively short period (2 years) of our experiment. The co-occurrence network of bacterial and fungal communities was the most dominant factor affecting multifunctionality, the numbers of negative interactions but not positive interactions were linked to multifunctionality. In particular, our results provided evidence that microbial network topological features are crucial for maintaining ecosystem functions in grassland ecosystems, which should be considered in related studies to accurately predict the responses of ecosystem multifunctionality to predicted changes in precipitation patterns.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献