Effect of the bacterial community assembly process on the microbial remediation of petroleum hydrocarbon-contaminated soil

Author:

Zheng Xuehao,Oba Belay Tafa,Shen Chenbo,Rong Luge,Zhang Bin,Huang Ling,Feng Lujie,Liu Jiani,Du Tiantian,Deng Yujie

Abstract

IntroductionThe accumulation of petroleum hydrocarbons (PHs) in the soil can reduce soil porosity, hinder plant growth, and have a serious negative impact on soil ecology. Previously, we developed PH-degrading bacteria and discovered that the interaction between microorganisms may be more important in the degradation of PHs than the ability of exogenous-degrading bacteria. Nevertheless, the role of microbial ecological processes in the remediation process is frequently overlooked.MethodsThis study established six different surfactant-enhanced microbial remediation treatments on PH-contaminated soil using a pot experiment. After 30 days, the PHs removal rate was calculated; the bacterial community assembly process was also determined using the R language program, and the assembly process and the PHs removal rate were correlated.Results and discussionThe rhamnolipid-enhanced Bacillus methylotrophicus remediation achieved the highest PHs removal rate, and the bacterial community assembly process was impacted by deterministic factors, whereas the bacterial community assembly process in other treatments with low removal rates was affected by stochastic factors. When compared to the stochastic assembly process and the PHs removal rate, the deterministic assembly process and the PHs removal rate were found to have a significant positive correlation, indicating that the deterministic assembly process of bacterial communities may mediate the efficient removal of PHs. Therefore, this study recommends that when using microorganisms to remediate contaminated soil, care should be taken to avoid strong soil disturbance because directional regulation of bacterial ecological functions can also contribute to efficient removal of pollutants.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3