Sediment Disturbance Negatively Impacts Methanogen Abundance but Has Variable Effects on Total Methane Emissions

Author:

Rowe Annette,Urbanic Megan,Trutschel Leah,Shukle John,Druschel Gregory,Booth Michael

Abstract

Methane emissions from aquatic ecosystems are increasingly recognized as substantial, yet variable, contributions to global greenhouse gas emissions. This is in part due to the challenge of modeling biologic parameters that affect methane emissions from a wide range of sediments. For example, the impacts of fish bioturbation on methane emissions in the literature have been shown to result in a gradient of reduced to enhanced emissions from sediments. However, it is likely that variation in experimental fish density, and consequently the frequency of bioturbation by fish, impacts this outcome. To explore how the frequency of disturbance impacts the levels of methane emissions in our previous work we quantified greenhouse gas emissions in sediment microcosms treated with various frequencies of mechanical disturbance, analogous to different levels of activity in benthic feeding fish. Greenhouse gas emissions were largely driven by methane ebullition and were highest for the intermediate disturbance frequency (disturbance every 7 days). The lowest emissions were for the highest frequency treatment (3 days). This work investigated the corresponding impacts of disturbance treatments on the microbial communities associated with producing methane. In terms of total microbial community structure, no statistical difference was observed in the total community structure of any disturbance treatment (0, 3, 7, and 14 days) or sediment depth (1 and 3 cm) measured. Looking specifically at methanogenic Archaea however, a shift toward greater relative abundance of a putatively oxygen-tolerant methanogenic phylotype (ca. Methanothrix paradoxum) was observed for the highest frequency treatments and at depths impacted by disturbance (1 cm). Notably, quantitative analysis of ca. Methanothrix paradoxum demonstrated no change in abundance, suggesting disturbance negatively and preferentially impacted other methanogen populations, likely through oxygen exposure. This was further supported by a linear decrease in quantitative abundance of methanogens (assessed by qPCR of the mcrA gene), with increased disturbance frequency in bioturbated sediments (1 cm) as opposed to those below the zone of bioturbation (3 cm). However, total methane emissions were not simply a function of methanogen populations and were likely impacted by the residence time of methane in the lower frequency disturbance treatments. Low frequency mechanical disruption results in lower methane ebullition compared to higher frequency treatments, which in turn resulted in reduced overall methane release, likely through enhanced methanotrophic activities, though this could not be identified in this work. Overall, this work contributes to understanding how animal behavior may impact variation in greenhouse gas emissions and provides insight into how frequency of disturbance may impact emissions.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3