Uncovering Competitive and Restorative Effects of Macro- and Micronutrients on Sodium Benzoate Biodegradation

Author:

Zaveri Purvi,Iyer Aishwarya Raghu,Patel Rushika,Munshi Nasreen Shakil

Abstract

A model aromatic compound, sodium benzoate, is generally used for simulating aromatic pollutants present in textile effluents. Bioremediation of sodium benzoate was studied using the most abundant bacteria, Pseudomonas citronellolis, isolated from the effluent treatment plants of South Gujarat, India. Multiple nutrients constituting the effluent in actual conditions are proposed to have interactive effects on biodegradation which needs to be analyzed strategically for successful field application of developed bioremediation process. Two explicitly different sets of fractional factorial designs were used to investigate the interactive influence of alternative carbon, nitrogen sources, and inorganic micronutrients on sodium benzoate degradation. The process was negatively influenced by the co-existence of other carbon sources and higher concentration of KH2PO4 whereas NH4Cl and MgSO4 exhibited positive effects. Optimized concentrations of NH4Cl, MgSO4, and KH2PO4 were found to be 0.35, 1.056, and 0.3 mg L–1 respectively by central composite designing. The negative effect of high amount of KH2PO4 could be ameliorated by increasing the amount of NH4Cl in the biodegradation milieu indicating the possibility of restoration of the degradation capability for sodium benzoate degradation in the presence of higher phosphate concentration.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3