Highly active bacterial DMSP metabolism in the surface microlayer of the eastern China marginal seas

Author:

Liu Xiujie,Zhang Yunhui,Sun Hao,Tan Siyin,Zhang Xiao-Hua

Abstract

The microbial cycling of dimethylsulfoniopropionate (DMSP) and the resulting gaseous catabolites dimethylsulfide (DMS) or methylmercaptan (MeSH) play key roles in the global sulfur cycle and potentially climate regulation. As the ocean–atmosphere boundary, the sea surface microlayer (SML) is important for the generation and emission of DMS and MeSH. However, understanding of the microbial DMSP metabolism remains limited in the SML. Here, we studied the spatiotemporal differences for DMS/DMSP, bacterial community structure and the key bacterial DMSP metabolic genes between SML and subsurface seawater (SSW) samples in the eastern China marginal seas (the East China Sea and Yellow Sea). In general, DMSPd and DMSPt concentrations, and the abundance of total, free-living and particle-associated bacteria were higher in SML than that in SSW. DMSP synthesis (~7.81-fold for dsyB, ~2.93-fold for mmtN) and degradation genes (~5.38-fold for dmdA, ~6.27-fold for dddP) detected in SML were more abundant compared with SSW samples. Free-living bacteria were the main DMSP producers and consumers in eastern Chinese marginal sea. Regionally, the bacterial community structure was distinct between the East China Sea and the Yellow Sea. The abundance of DMSP metabolic genes (dsyB, dmdA, and dddP) and genera in the East China Sea were higher than those of the Yellow Sea. Seasonally, DMSP/DMS level and DMSP metabolic genes and bacteria were more abundant in SML of the East China Sea in summer than in spring. Different from those in spring, Ruegeria was the dominant DMSP metabolic bacteria. In conclusion, the DMSP synthesis and degradation showed significant spatiotemporal differences in the SML of the eastern China marginal seas, and were consistently more active in the SML than in the SSW.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3