Exploring biodegradative efficiency: a systematic review on the main microplastic-degrading bacteria

Author:

da Silva Milena Roberta Freire,Souza Karolayne Silva,Motteran Fabricio,de Araújo Lívia Caroline Alexandre,Singh Rishikesh,Bhadouria Rahul,de Oliveira Maria Betânia Melo

Abstract

IntroductionMicroplastics (MPs) are widely distributed in the environment, causing damage to biota and human health. Due to their physicochemical characteristics, they become resistant particles to environmental degradation, leading to their accumulation in large quantities in the terrestrial ecosystem. Thus, there is an urgent need for measures to mitigate such pollution, with biological degradation being a viable alternative, where bacteria play a crucial role, demonstrating high efficiency in degrading various types of MPs. Therefore, the study aimed to identify bacteria with the potential for MP biodegradation and the enzymes produced during the process.MethodsThe methodology used followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol.Results and DiscussionThe research yielded 68 eligible studies, highlighting bacteria from the genera Bacillus, Pseudomonas, Stenotrophomonas, and Rhodococcus as the main organisms involved in MP biodegradation. Additionally, enzymes such as hydrolases and alkane hydroxylases were emphasized for their involvement in this process. Thus, the potential of bacterial biodegradation is emphasized as a promising pathway to mitigate the environmental impact of MPs, highlighting the relevance of identifying bacteria with biotechnological potential for large-scale applications in reducing MP pollution.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Nexus Between the Transport Mechanisms and Remediation Techniques of Microplastics;Emerging Contaminants and Associated Treatment Technologies;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3