Planting grass enhances relations between soil microbes and enzyme activities and restores soil functions in a degraded grassland

Author:

Zhang Minghui,Li Zhuo,Zhang Bin,Zhang Ruohui,Xing Fu

Abstract

IntroductionForage culture is a common way to restore degraded grasslands and soil functions, in which the reconstruction of the soil microbial community and its relationship with extracellular enzyme activity (EEAs) can characterize the recovery effects of degraded grasslands. However, the impacts of forage culture on the interaction between soil microbes and EEAs and whether the recovery effect of soil functions depends on the varying degradation statuses remain unclear.MethodsWe conducted a plantation of a dominant grass, Leymus chinensis, in the soil collected from severe, moderate, light, and non-degradation statuses in the Songnen grassland in northeastern China. We measured soil microbial diversity and soil EEAs, and predicted microbial functional groups using FUNGuild.ResultsThe results showed that L. chinensis culture promoted soil bacterial alpha diversity and soil EEAs only in the moderate degradation status, indicating a dramatic dependence of the recovery effects of the grass culture on degradation status of the grassland. After planting L. chinensis for 10 weeks, a decreasing trend in the chemoheterotrophy and nitrate-reduction microbial functional groups was found. In contrast, the abundance of the nitrogen (N)-fixing microbial functional group tended to increase. The positive correlation between soil EEAs and the nitrate-reduction and N-fixing microbial functional groups was enhanced by planting L. chinensis, indicating that grass culture could promote soil N cycle functions.ConclusionWe illuminate that grass culture may promote the restoration of soil functions, especially soil N cycling in degraded grasslands, and the recovery effect may depend on the grassland degradation status. We emphasized that selection of the plant species for restoration of grasslands needs to consider the restoration effects of microbial functional groups and soil functions.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3