Probiotic Lactobacillus rhamnosus GG Promotes Mouse Gut Microbiota Diversity and T Cell Differentiation

Author:

Shi Chun-wei,Cheng Ming-yang,Yang Xin,Lu Yi-yuan,Yin Hong-duo,Zeng Yan,Wang Ru-yu,Jiang Yan-long,Yang Wen-tao,Wang Jian-zhong,Zhao Dan-dan,Huang Hai-bin,Ye Li-ping,Cao Xin,Yang Gui-lian,Wang Chun-feng

Abstract

Lactic acid bacteria (LAB) are the primary genera of the intestinal flora and have many probiotic functions. In the present study, Lactobacillus rhamnosus GG (LGG) ATCC 53103 was used to treat BALB/c mice. After LGG intervention, both low and high LGG doses were shown to improve the observed OTU, Chao1, ACE, and Shannon indices, while the Simpson index decreased, demonstrating that LGG can promote intestinal microbiota abundance and diversity. Furthermore, LGG treatment increased the abundances of intestinal Firmicutes, Bacteroides and Actinomycetes while reducing that of Proteobacteria. In addition to its effect on gut the microbiota, LGG could also regulate the host immune system. In the present study, we showed that LGG could affect the percentage of CD3+ T lymphocytes in the spleens (SPLs), mesenteric lymph nodes (MLNs), Peyer’s patches (PPs) and lamina propria lymphocytes (LPLs) of mice, including total CD3+ T, CD3+CD4+ T, and CD3+CD8+ T lymphocytes. Furthermore, LGG could effectively increase the expression of Th1-type cytokines (IFN-γ) and Th2 cytokines (IL-4) in CD4+ T cells, indicating that the proportion of Th1 and Th2 cells in mice with LGG treatment was in a high equilibrium state compared to the control group. In addition, the IFN-γ/IL-4 ratio was greater than 1 in mice with LGG intervention, suggesting that LGG tends to mediate the Th1 immune response. The results of the present study also showed that LGG upregulated the expression of IL-17 in CD4+ T cells and regulated the percentage of CD4+CD25+Foxp3+ Treg cells in various secondary immunological organs, indicating that LGG may promote the balance of Th-17 and Treg cells.

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3