Pangenome analysis of the genus Herbiconiux and proposal of four new species associated with Chinese medicinal plants

Author:

Deng Yang,Jiang Zhu-Ming,Han Xue-Fei,Su Jing,Yu Li-Yan,Liu Wei-Hong,Zhang Yu-Qin

Abstract

Five Gram-stain-positive, aerobic, non-motile actinobacterial strains designated as CPCC 205763T, CPCC 203386T, CPCC 205716T, CPCC 203406T, and CPCC 203407 were obtained from different ecosystems associated with four kinds of Chinese traditional medicinal plants. The 16S rRNA gene sequences of these five strains showed closely related to members of the genus Herbiconiux of the family Microbacteriaceae, with the highest similarities of 97.4–99.7% to the four validly named species of Herbiconiux. In the phylogenetic trees based on 16S rRNA gene sequences and the core genome, these isolates clustered into the clade of the genus Herbiconiux within the lineage of the family Microbacteriaceae. The overall genome relatedness indexes (values of ANI and dDDH) and the phenotypic properties (morphological, physiological and chemotaxonomic characteristics) of these isolates, readily supported to affiliate them to the genus Herbiconiux, representing four novel species, with the isolates CPCC 203406T and CPCC 203407 being classified in the same species. For which the names Herbiconiux aconitum sp. nov. (type strain CPCC 205763T = I19A-01430T = CGMCC 1.60067T), Herbiconiux daphne sp. nov. (type strain CPCC 203386T = I10A-01569T = DSM 24546T = KCTC 19839T), Herbiconiux gentiana sp. nov. (type strain CPCC 205716T = I21A-01427T = CGMCC 1.60064T), and Herbiconiux oxytropis sp. nov. (type strain CPCC 203406T = I10A-02268T = DSM 24549T = KCTC 19840T) were proposed, respectively. In the genomes of these five strains, the putative encoding genes for amidase, endoglucanase, phosphatase, and superoxidative dismutase were retrieved, which were classified as biosynthetic genes/gene-clusters regarding plant growth-promotion (PGP) functions. The positive results from IAA-producing, cellulose-degrading and anti-oxidation experiments further approved their potential PGP bio-functions. Pangenome analysis of the genus Herbiconiux supported the polyphasic taxonomy results and confirmed their bio-function potential.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

National Infrastructure of Microbial Resources

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3