Metagenomics reveals biogeochemical processes carried out by sediment microbial communities in a shallow eutrophic freshwater lake

Author:

Kuang Bo,Xiao Rong,Hu Yanping,Wang Yaping,Zhang Ling,Wei Zhuoqun,Bai Junhong,Zhang Kegang,Acuña Jacquelinne J.,Jorquera Milko A.,Pan Wenbin

Abstract

IntroductionAs the largest shallow freshwater lake in the North China Plain, Baiyangdian lake is essential for maintaining ecosystem functioning in this highly populated region. Sediments are considered to record the impacts of human activities.MethodsThe abundance, diversity and metabolic pathways of microbial communities in sediments were studied by metagenomic approach to reveal patterns and mechanism of C, N, P and S cycling under the threat of lake eutrophication.ResultsMany genera, with plural genes encoding key enzymes involved in genes, belonging to Proteobacteria and Actinobacteria which were the most main phylum in bacterial community of Baiyangdian sediment were involved in C, N, S, P cycling processes, such as Nocardioides (Actinobacteria), Thiobacillus, Nitrosomonas, Rhodoplanes and Sulfuricaulis (Proteobacteria).For instance, the abundance of Nocardioides were positively correlated to TN, EC, SOC and N/P ratio in pathways of phytase, regulation of phosphate starvation, dissimilatory sulfate reduction and oxidation, assimilatory sulfate reduction, assimilatory nitrate reduction and reductive tricarboxylic acid (rTCA) cycle. Many key genes in C, N, P, S cycling were closely related to the reductive citrate cycle. A complete while weaker sulfur cycle between SO42− and HS might occur in Baiyangdian lake sediments compared to C fixation and N cycling. In addition, dissimilatory nitrate reduction to ammonia was determined to co-occur with denitrification. Methanogenesis was the main pathway of methane metabolism and the reductive citrate cycle was accounted for the highest proportion of C fixation processes. The abundance of pathways of assimilatory nitrate reduction, denitrification and dissimilatory nitrate reduction of nitrogen cycling in sediments with higher TN content was higher than those with lower TN content. Besides, Nocardioides with plural genes encoding key enzymes involved in nasAB and nirBD gene were involved in these pathways.DiscussionNocardioides involved in the processes of assimilatory nitrate reduction, denitrification and dissimilatory nitrate reduction of nitrogen cycling may have important effects on nitrogen transformation.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3