Author:
Wang Chufang,Ye Qinghua,Ding Yu,Zhang Jumei,Gu Qihui,Pang Rui,Zhao Hui,Wang Juan,Wu Qingping
Abstract
Accurate serotyping is essential for effective infection control. Pseudomonas aeruginosa serogroup G is one of the most common serogroups found in water. Conventional serotyping methods are not standardized and have several shortcomings. Therefore, a robust method for rapidly identifying P. aeruginosa serotypes is required. This study established a real-time PCR method for identifying P. aeruginosa serogroup G strains using novel target gene primers based on comparative genomic analysis. A total of 343 genome sequences, including 16 P. aeruginosa serogroups and 67 other species, were analyzed. Target genes identified were amplified using real-time PCR for detecting P. aeruginosa serogroup G strains. Eight serogroup G genes, PA59_01276, PA59_01887, PA59_01888, PA59_01891, PA59_01894, PA59_04268, PA59_01892, and PA59_01896, were analyzed to determine specific targets. A real-time fluorescence quantitative PCR method, based on the novel target PA59_01276, was established to detect and identify serogroup G strains. The specificity of this method was confirmed using P. aeruginosa serogroups and non-P. aeruginosa species. The sensitivity of this real-time PCR method was 4 × 102 CFU/mL, and it could differentiate and detect P. aeruginosa serogroup G in the range of 4.0 × 103–4.0 × 108 CFU/mL in artificially contaminated drinking water samples without enrichment. The sensitivity of these detection limits was higher by 1–3 folds compared to that of the previously reported PCR methods. In addition, the G serum group was accurately detected using this real-time PCR method without interference by high concentrations of artificially contaminated serum groups F and D. These results indicate that this method has high sensitivity and accuracy and is promising for identifying and rapidly detecting P. aeruginosa serogroup G in water samples. Moreover, this research will contribute to the development of effective vaccines and therapies for infections caused by multidrug-resistant P. aeruginosa.
Funder
National Key Research and Development Program of China
Guangdong Provincial Key Laboratory of Urology
National Science and Technology Major Project
National Major Science and Technology Projects of China
Subject
Microbiology (medical),Microbiology