Differentiation and Variability in the Rhizosphere and Endosphere Microbiomes of Healthy and Diseased Cotton (Gossypium sp.)

Author:

Shi Yingwu,Yang Hongmei,Chu Ming,Niu Xinxiang,Wang Ning,Lin Qing,Lou Kai,Zuo Changgeng,Wang Jingyi,Zou Qiang,Zhang Yumeng

Abstract

The plant microbiome is a key determinant of health and productivity. However, it is still difficult to understand the structural composition of the bacterial and fungal microbiomes of diseased and healthy plants, especially the spatial dynamics and phylogenies of endophytic and rhizosphere microbial communities. We studied the differentiation and variability in the rhizosphere and endosphere microbiomes of healthy and diseased cotton from north and south of the Tianshan Mountains using the methods of PCR-based high-throughput sequencing and real-time quantitative PCR. The endophytic and rhizosphere bacterial abundances in the diseased plants were greater than those of healthy plants. The numbers of endophytic and rhizosphere fungi associated with diseased plants were greater than those associated healthy plants (p < 0.05). Endophytic and rhizosphere bacteria did not share common OTUs. The dominant rhizosphere bacteria were Proteobacteria (29.70%), Acidobacteria (23.14%), Gemmatimonadetes (15.17%), Actinobacteria (8.31%), Chloroflexi (7.99%), and Bacteroidetes (5.15%). The dominant rhizosphere fungi were Ascomycota (83.52%), Mortierellomycota (7.67%), Basidiomycota (2.13%), Chytridiomycota (0.39%), and Olpidiomycota (0.08%). The distribution of dominant bacteria in different cotton rhizosphere soils and roots differed, with the dominant bacteria Pseudomonas (15.54%) and Pantoea (9.19%), and the dominant fungi Alternaria (16.15%) and Cephalotrichum (9.10%) being present in the greatest numbers. At sampling points in different ecological regions, the total numbers of cotton endophytic and rhizosphere microbiome OTUs from southern to northern Xinjiang showed an increasing trend. There were significant differences in the composition and diversity of rhizosphere microbes and endophytes during the entire cotton growth period and in representative ecological regions (p < 0.01), whereas rhizosphere microbes and endophytes showed no significant differences among the four growth periods and in representative ecological regions. RB41, H16, Nitrospira, and Sphingomonas play important roles in the microbial ecology of cotton rhizosphere soil. Pseudomonas accounted for a large proportion of the microbes in the cotton rhizosphere soil. This study provides an in-depth understanding of the complex microbial composition and diversity associated with cotton north and south of the Tianshan Mountains.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3