Variations in Concentration and Carbon Isotope Composition of Methanotroph Biomarkers in Sedge Peatlands Along the Altitude Gradient in the Changbai Mountain, China

Author:

Zhao Meiling,Wang Ming,Zhao Yantong,Jiang Ming,Wang Guodong

Abstract

Northern peatlands are one of the largest natural sources of atmospheric methane globally. As the only biological sink of methane, different groups of methanotrophs use different carbon sources. However, the variations in microbial biomass and metabolism of different methanotrophic groups in peatlands along the altitude gradient are uncertain. We measured the concentrations and metabolic characteristics of type I (16:1ω7c and 16:1ω5c) and type II (18:1ω7c) methanotroph biomarkers using biomarkers and stable isotopes in eight Carex peatlands along an altitude gradient from 300 to 1,500 m in the Changbai Mountain, China. We found that the trends with altitude in concentrations of the type I and type II methanotroph biomarkers were different. The dominating microbial group changed from type I to type II methanotroph with increasing altitude. The concentrations of type I and type II methanotroph biomarkers were significantly affected by the total phosphorus, total nitrogen, and dissolved organic carbon, respectively. The δ13C values of type II methanotroph biomarkers changed significantly along the altitude gradient, and they were more depleted than type II methanotroph biomarkers, which indicates the difference in carbon source preference between type I and type II methanotrophs. This study highlights the difference in the concentration and carbon source utilization of type I and type II methanotrophic groups along the altitude gradient, and enhances our understanding of the metabolic process of methane mediated by methanotrophs and its impact on carbon-sink function in northern peatlands.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3