Towards sustainable biocontrol: inhibition of soil borne fungi by microalgae from harsh environments

Author:

Eckstien Dikla,Maximov Noga,Margolis Nofet,Raanan Hagai

Abstract

Using microorganisms as biocontrol agents against soilborne plant pathogens is a promising alternative to chemical pesticides. However, only some biocontrol agents have proven effective under field conditions. This study explores the potential of highly resilient microalgae isolated from harsh environments, such as Biological Soil Crusts and agricultural fields in semi-arid regions, as a novel and sustainable approach to biocontrol. Fifty-nine microalgal strains, including thirteen cyanobacteria and forty-six green algae, were isolated and identified. Dual-culture plate assays and toxicity tests of microalgal growth media were conducted to evaluate the antifungal activity of the isolates against eight representative soilborne pathogens. The results showed that many microalgae strains exhibited significant inhibitory effects on the growth of specific fungal pathogens, although the activity varied among different microalgal strains and pathogen species. Some strains even promoted the growth of certain fungi. The lack of a clear pattern in the antifungal activity highlights the complexity and specificity of the interactions between microalgae and soilborne pathogens. An “Inhibition Effectiveness” metric was developed to quantify biocontrol potential based on fungal growth inhibition. The green algal genus Desmodesmus, particularly Desmodesmus subspicatus isolates, showed higher antifungal efficacy than other genera. While the inhibitory mechanisms remain unclear, the results demonstrate the promising biocontrol capabilities of microalgae from extreme environments like BSCs. Further research could unlock novel opportunities for sustainable disease management by harnessing specific microalgal strains or synergistic strain combinations targeting soilborne pathogens.

Publisher

Frontiers Media SA

Reference20 articles.

1. Desert microbes for boosting sustainable agriculture in extreme environments;Alsharif;Front. Microbiol.,2020

2. Abiotic stress tolerant Trichoderma asperellum Tvb1 from hot spring and its antagonistic potential against soil borne Phytopathogens;Anwer;Int. Arch. Appl. Sci. Technol.,2020

3. The sustainability of arid agriculture: trends and challenges;Ben-Gal;Ann. Arid Zone,2006

4. Soil inoculation with Cyanobacteria: reviewing its’ potential for agriculture sustainability in drylands;Chamizo;Agric. Res. Technol. Open Access J.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3