Salinity-Linked Denitrification Potential in Endorheic Lake Bosten (China) and Its Sensitivity to Climate Change

Author:

Jiang Xingyu,Liu Changqing,Hu Yang,Shao Keqiang,Tang Xiangming,Gao Guang,Qin Boqiang

Abstract

Endorheic lakes in arid regions of Northwest China are generally vulnerable and sensitive to accelerated climate change and extensive human activities. Therefore, a better understanding of the self-purification capacity of ecosystems, such as denitrification, is necessary to effectively protect these water resources. In the present study, we measured unamended and amended denitrification rates of Lake Bosten by adding the ambient and extra nitrate isotopes in slurry incubations. Meanwhile, we investigated the abundances and community structure of nitrous oxide-reducing microorganisms using qPCR and high-throughput sequencing, respectively, in the surface sediments of Lake Bosten to study denitrification potential in endorheic lakes of arid regions as well as the response of those denitrifiers to climatically induced changes in lake environments. Amended denitrification rates increased by one order of magnitude compared to unamended rates in Lake Bosten. The great discrepancy between unamended and amended rates was attributed to low nitrate availability, indicating that Lake Bosten is not operating at maximum capacity of denitrification. Salinity shaped the spatial heterogeneity of denitrification potential through changes in the abundances and species diversity of denitrifiers. Climate change had a positive effect on the water quality of Lake Bosten so far, through increased runoff, decreased salinity, and enhanced denitrification. But the long-term trajectories of water quality are difficult to predict alongside future glacier shrinkage and decreased snow cover.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3