Acquisition of Daptomycin Resistance by Enterococcus faecium Confers Collateral Sensitivity to Glycopeptides

Author:

Zeng Weiliang,Feng Luozhu,Qian Changrui,Chen Tao,Wang Sipei,Zhang Ying,Zheng Xiangkuo,Wang Lingbo,Liu Shixing,Zhou Tieli,Sun Yao

Abstract

Daptomycin is a last-line antibiotic used in the treatment of multidrug-resistant Enterococcus faecium infections. Alarmingly, daptomycin-resistant E. faecium isolates have emerged. In this study, we investigated the evolution and mechanisms of daptomycin resistance in clinical E. faecium isolates and the corresponding acquisition of collateral sensitivity (CS) as an evolutionary trade-off. We evolved daptomycin resistance in six daptomycin-susceptible E. faecium isolates to obtain daptomycin-resistant mutants. The six E. faecium strains successfully acquired high-level resistance to daptomycin in vitro, but this led to fitness costs in terms of growth, in vitro competition, and virulence. Mutations in liaFSR, yycFG, and cls; increased surface positive charge; thicker cell walls; and elevated expression of dltABCD and tagGH were observed in daptomycin-resistant mutants. Surprisingly, we observed the emergence of CS in SC1762 isolates after the induction of daptomycin resistance. Compared with parental strains, the SC1174-D strain (i.e., daptomycin-resistant mutant of SC1174; non-CS) showed significantly upregulated expression of the vanA gene cluster. However, in SC1762-D (i.e., daptomycin-resistant mutant of SC1762), all vanA cluster genes except the vanX gene were obviously downregulated. Further in silico analyses revealed that an IS1216E-based composite transposon was generated in SC1762-D, and it disrupted the vanH gene, likely affecting the structure and expression of the vanA gene cluster and resulting in resensitization to glycopeptides. Overall, this study reports a novel form of CS between daptomycin and glycopeptides in E. faecium. Further, it provides a valuable foundation for developing effective regimens and sequential combinations of daptomycin and glycopeptides against E. faecium.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3