Association of sleep characteristics with cardiovascular disease risk in adults over 40 years of age: a cross-sectional survey

Author:

Hou Xin-Zheng,Li Yu-Shan,Wu Qian,Lv Qian-Yu,Yang Ying-Tian,Li Lan-Lan,Ye Xue-Jiao,Yang Chen-Yan,Wang Man-Shi,Lv Yan-Fei,Cao Lin-Lin,Wang Shi-Han

Abstract

BackgroundThe relationship between sleep characteristics and cardiovascular disease (CVD) risk has yet to reach a consistent conclusion, and more research needs to be carried out. This study aimed to explore the relationship between snoring, daytime sleepiness, bedtime, sleep duration, and high-risk sleep patterns with CVD risk.MethodsData from the National Health and Nutrition Examination Survey (NHANES) 2015–2018 were collected and analyzed. Multivariable logistic regression was used to evaluate the relationship between snoring, daytime sleepiness, bedtime, sleep duration, high-risk sleep patterns, and CVD risk. Stratified analysis and interaction tests were carried out according to hypertension, diabetes and age.ResultsThe final analysis contained 6,830 participants, including 1,001 with CVD. Multivariable logistic regression suggested that the relationship between snoring [OR = 7.37,95%CI = (6.06,8.96)], daytime sleepiness [OR = 11.21,95%CI = (9.60,13.08)], sleep duration shorter than 7 h [OR = 9.50,95%CI = (7.65,11.79)] or longer than 8 h [OR = 6.61,95%CI = (5.33,8.19)], bedtime after 0:00 [OR = 13.20,95%CI = (9.78,17.80)] compared to 22:00–22:59, high-risk sleep patterns [OR = 47.73,95%CI = (36.73,62.04)] and CVD risk were statistically significant. Hypertension and diabetes interacted with high-risk sleep patterns, but age did not.ConclusionsSnoring, daytime sleepiness, excessive or short sleep duration, inappropriate bedtime, and high-risk sleep patterns composed of these factors are associated with the CVD risk. High-risk sleep patterns have a more significant impact on patients with hypertension and diabetes.

Funder

General Project of National Natural Science Foundation of China

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3