Author:
Dehghanbanadaki Hojat,Dodangeh Salimeh,Parhizkar Roudsari Peyvand,Hosseinkhani Shaghayegh,Khashayar Pouria,Noorchenarboo Mohammad,Rezaei Negar,Dilmaghani-Marand Arezou,Yoosefi Moein,Arjmand Babak,Khalagi Kazem,Najjar Niloufar,Kakaei Ardeshir,Bandarian Fatemeh,Aghaei Meybodi Hamid,Larijani Bagher,Razi Farideh
Abstract
BackgroundThe intermediate metabolites associated with the development of atherosclerotic cardiovascular disease (ASCVD) remain largely unknown. Thus, we conducted a large panel of metabolomics profiling to identify the new candidate metabolites that were associated with 10-year ASCVD risk.MethodsThirty acylcarnitines and twenty amino acids were measured in the fasting plasma of 1,102 randomly selected individuals using a targeted FIA-MS/MS approach. The 10-year ASCVD risk score was calculated based on 2013 ACC/AHA guidelines. Accordingly, the subjects were stratified into four groups: low-risk (n = 620), borderline-risk (n = 110), intermediate-risk (n = 225), and high-risk (n = 147). 10 factors comprising collinear metabolites were extracted from principal component analysis.ResultsC4DC, C8:1, C16OH, citrulline, histidine, alanine, threonine, glycine, glutamine, tryptophan, phenylalanine, glutamic acid, arginine, and aspartic acid were significantly associated with the 10-year ASCVD risk score (p-values ≤ 0.044). The high-risk group had higher odds of factor 1 (12 long-chain acylcarnitines, OR = 1.103), factor 2 (5 medium-chain acylcarnitines, OR = 1.063), factor 3 (methionine, leucine, valine, tryptophan, tyrosine, phenylalanine, OR = 1.074), factor 5 (6 short-chain acylcarnitines, OR = 1.205), factor 6 (5 short-chain acylcarnitines, OR = 1.229), factor 7 (alanine, proline, OR = 1.343), factor 8 (C18:2OH, glutamic acid, aspartic acid, OR = 1.188), and factor 10 (ornithine, citrulline, OR = 1.570) compared to the low-risk ones; the odds of factor 9 (glycine, serine, threonine, OR = 0.741), however, were lower in the high-risk group. “D-glutamine and D-glutamate metabolism”, “phenylalanine, tyrosine, and tryptophan biosynthesis”, and “valine, leucine, and isoleucine biosynthesis” were metabolic pathways having the highest association with borderline/intermediate/high ASCVD events, respectively.ConclusionsAbundant metabolites were found to be associated with ASCVD events in this study. Utilization of this metabolic panel could be a promising strategy for early detection and prevention of ASCVD events.
Subject
Cardiology and Cardiovascular Medicine