Notopterol Attenuates Monocrotaline-Induced Pulmonary Arterial Hypertension in Rat

Author:

Huang Lin,Li Huayang,Huang Suiqing,Wang Shunjun,Liu Quan,Luo Li,Gan Shuangjiao,Fu Guangguo,Zou PeiYun,Chen Guangxian,Wu Zhongkai

Abstract

IntroductionCurrent targeted pulmonary arterial hypertension (PAH) therapies have improved lung hemodynamics, cardiac function, and quality of life; however, none of these have reversed the ongoing remodeling of blood vessels. Considering notopterol, a linear furocoumarin extracted from the root of traditional Chinese medicine Qiang-Huo (Notopterygium incisum), had shown the antiproliferative and anti-inflammatory properties in previous studies, we hypothesized that it could play a role in ameliorating PAH.MethodsIn vivo, we conducted monocrotaline (MCT) induced PAH rats and treated them with notopterol for 3 weeks. Then, the rats were examined by echocardiography and RV catheterization. The heart and lung specimens were harvested for the detection of gross examination, histological examination and expression of inflammatory molecules. In vitro, human pulmonary arterial smooth muscle cells (HPASMCs) were treated with notopterol after hypoxia; then, cell proliferation was assessed by cell counting kit-8 and Edu assay, and cell migration was detected by wound healing assays.ResultsWe found that notopterol improved mortality rate and RV function while reducing right ventricular systolic pressure in MCT-induced PAH rats. Furthermore, notopterol reduced right ventricular hypertrophy and fibrosis, and it also eased pulmonary vascular remodeling and MCT-induced muscularization. In addition, notopterol attenuated the pro-inflammatory factor (IL-1β, IL-6) and PCNA in the lungs of PAH rats. For the cultured HPASMCs subjected to hypoxia, we found that notopterol can inhibit the proliferation and migration of HPASMCs.ConclusionOur studies show that notopterol exerts anti-inflammatory and anti-proliferative effects in the pulmonary arteries, which may contribute to prevention of PAH.

Publisher

Frontiers Media SA

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3