Myocardial strain analysis of echocardiography based on deep learning

Author:

Deng Yinlong,Cai Peiwei,Zhang Li,Cao Xiongcheng,Chen Yequn,Jiang Shiyan,Zhuang Zhemin,Wang Bin

Abstract

BackgroundStrain analysis provides more thorough spatiotemporal signatures for myocardial contraction, which is helpful for early detection of cardiac insufficiency. The use of deep learning (DL) to automatically measure myocardial strain from echocardiogram videos has garnered recent attention. However, the development of key techniques including segmentation and motion estimation remains a challenge. In this work, we developed a novel DL-based framework for myocardial segmentation and motion estimation to generate strain measures from echocardiogram videos.MethodsThree-dimensional (3D) Convolutional Neural Network (CNN) was developed for myocardial segmentation and optical flow network for motion estimation. The segmentation network was used to define the region of interest (ROI), and the optical flow network was used to estimate the pixel motion in the ROI. We performed a model architecture search to identify the optimal base architecture for motion estimation. The final workflow design and associated hyperparameters are the result of a careful implementation. In addition, we compared the DL model with a traditional speck tracking algorithm on an independent, external clinical data. Each video was double-blind measured by an ultrasound expert and a DL expert using speck tracking echocardiography (STE) and DL method, respectively.ResultsThe DL method successfully performed automatic segmentation, motion estimation, and global longitudinal strain (GLS) measurements in all examinations. The 3D segmentation has better spatio-temporal smoothness, average dice correlation reaches 0.82, and the effect of target frame is better than that of previous 2D networks. The best motion estimation network achieved an average end-point error of 0.05 ± 0.03 mm per frame, better than previously reported state-of-the-art. The DL method showed no significant difference relative to the traditional method in GLS measurement, Spearman correlation of 0.90 (p < 0.001) and mean bias −1.2 ± 1.5%.ConclusionIn conclusion, our method exhibits better segmentation and motion estimation performance and demonstrates the feasibility of DL method for automatic strain analysis. The DL approach helps reduce time consumption and human effort, which holds great promise for translational research and precision medicine efforts.

Funder

Li Ka Shing Foundation

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Frontiers Media SA

Subject

Cardiology and Cardiovascular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3