Cardiometabolic biomarker patterns associated with cardiac MRI defined fibrosis and microvascular dysfunction in patients with heart failure with preserved ejection fraction

Author:

Siggins Connor,Pan Jonathan A.,Löffler Adrián I.,Yang Yang,Shaw Peter W.,Balfour Pelbreton C.,Epstein Frederick H.,Gan Li-Ming,Kramer Christopher M.,Keeley Ellen C.,Salerno Michael

Abstract

IntroductionHeart failure with preserved ejection fraction (HFpEF) is a complex disease process influenced by metabolic disorders, systemic inflammation, myocardial fibrosis, and microvascular dysfunction. The goal of our study is to identify potential relationships between plasma biomarkers and cardiac magnetic resonance (CMR) imaging markers in patients with HFpEF.MethodsNineteen subjects with HFpEF and 15 age-matched healthy controls were enrolled and underwent multiparametric CMR and plasma biomarker analysis using the Olink® Cardiometabolic Panel (Olink Proteomics, Uppsala, Sweden). Partial least squares discriminant analysis (PLS-DA) was used to characterize CMR and biomarker variables that differentiate the subject groups into two principal components. Orthogonal projection to latent structures by partial least squares (OPLS) analysis was used to identify biomarker patterns that correlate with myocardial perfusion reserve (MPR) and extracellular volume (ECV) mapping.ResultsA PLS-DA could differentiate between HFpEF and normal controls with two significant components explaining 79% (Q2 = 0.47) of the differences. For OPLS, there were 7 biomarkers that significantly correlated with ECV (R2 = 0.85, Q = 0.53) and 6 biomarkers that significantly correlated with MPR (R2 = 0.92, Q2 = 0.32). Only 1 biomarker significantly correlated with both ECV and MPR.DiscussionPatients with HFpEF have unique imaging and biomarker patterns that suggest mechanisms associated with metabolic disease, inflammation, fibrosis and microvascular dysfunction.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cardiac Magnetic Resonance Imaging in Heart Failure;Cardiovascular Innovations and Applications;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3