Calcium Dobesilate (CaD) Attenuates High Glucose and High Lipid-Induced Impairment of Sarcoplasmic Reticulum Calcium Handling in Cardiomyocytes

Author:

Deng Jianxin,Cai Xiangsheng,Hao Mingyu,Liu Xueting,Chen Zelong,Li Haiyan,Liu Junying,Liao Yunxiu,Fu Hao,Chen Huiyan,Qin Gangjian,Yan Dewen

Abstract

Calcium dobesilate (CaD) is used effectively in patients with diabetic microvascular disorder, retinopathy, and nephropathy. Here we sought to determine whether it has an effect on cardiomyocytes calcium mishandling that is characteristic of diabetic cardiomyopathy. Cardiomyocytes were sterile isolated and cultured from 1 to 3 days neonatal rats and treated with vehicle (Control), 25 mM glucose+300 μM Palmitic acid (HG+PA), 100 μM CaD (CaD), or HG+PA+CaD to test the effects on calcium signaling (Ca2+ sparks, transients, and SR loads) and reactive oxygen species (ROS) production by confocal imaging. Compared to Control, HG+PA treatment significantly reduced field stimulation-induced calcium transient amplitudes (2.22 ± 0.19 vs. 3.56 ± 0.21, p < 0.01) and the levels of caffeine-induced calcium transients (3.19 ± 0.14 vs. 3.72 ± 0.15, p < 0.01), however significantly increased spontaneous Ca2+ sparks firing levels in single cardiomyocytes (spontaneous frequency 2.65 ± 0.23 vs. 1.72 ± 0.12, p < 0.01) and ROS production (67.12 ± 4.4 vs. 47.65 ± 2.12, p < 0.05), which suggest that HG+PA treatment increases the Spontaneity Ca2+ spark frequency, and then induced partial reduction of SR Ca2+ content and subsequently weaken systolic Ca2+ transient in cardiomyocyte. Remarkably, these impairments in calcium signaling and ROS production were largely prevented by pre-treatment of the cells with CaD. Therefore, CaD may contribute to a good protective effect on patients with calcium mishandling and contractile dysfunction in cardiomyocytes associated with diabetic cardiomyopathy.

Publisher

Frontiers Media SA

Subject

Cardiology and Cardiovascular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3