MITEA: A dataset for machine learning segmentation of the left ventricle in 3D echocardiography using subject-specific labels from cardiac magnetic resonance imaging

Author:

Zhao Debbie,Ferdian Edward,Maso Talou Gonzalo D.,Quill Gina M.,Gilbert Kathleen,Wang Vicky Y.,Babarenda Gamage Thiranja P.,Pedrosa João,D’hooge Jan,Sutton Timothy M.,Lowe Boris S.,Legget Malcolm E.,Ruygrok Peter N.,Doughty Robert N.,Camara Oscar,Young Alistair A.,Nash Martyn P.

Abstract

Segmentation of the left ventricle (LV) in echocardiography is an important task for the quantification of volume and mass in heart disease. Continuing advances in echocardiography have extended imaging capabilities into the 3D domain, subsequently overcoming the geometric assumptions associated with conventional 2D acquisitions. Nevertheless, the analysis of 3D echocardiography (3DE) poses several challenges associated with limited spatial resolution, poor contrast-to-noise ratio, complex noise characteristics, and image anisotropy. To develop automated methods for 3DE analysis, a sufficiently large, labeled dataset is typically required. However, ground truth segmentations have historically been difficult to obtain due to the high inter-observer variability associated with manual analysis. We address this lack of expert consensus by registering labels derived from higher-resolution subject-specific cardiac magnetic resonance (CMR) images, producing 536 annotated 3DE images from 143 human subjects (10 of which were excluded). This heterogeneous population consists of healthy controls and patients with cardiac disease, across a range of demographics. To demonstrate the utility of such a dataset, a state-of-the-art, self-configuring deep learning network for semantic segmentation was employed for automated 3DE analysis. Using the proposed dataset for training, the network produced measurement biases of −9 ± 16 ml, −1 ± 10 ml, −2 ± 5 %, and 5 ± 23 g, for end-diastolic volume, end-systolic volume, ejection fraction, and mass, respectively, outperforming an expert human observer in terms of accuracy as well as scan-rescan reproducibility. As part of the Cardiac Atlas Project, we present here a large, publicly available 3DE dataset with ground truth labels that leverage the higher resolution and contrast of CMR, to provide a new benchmark for automated 3DE analysis. Such an approach not only reduces the effect of observer-specific bias present in manual 3DE annotations, but also enables the development of analysis techniques which exhibit better agreement with CMR compared to conventional methods. This represents an important step for enabling more efficient and accurate diagnostic and prognostic information to be obtained from echocardiography.

Funder

Health Research Council of New Zealand

National Heart Foundation of New Zealand

Publisher

Frontiers Media SA

Subject

Cardiology and Cardiovascular Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3