Implantable cardiac monitors: artificial intelligence and signal processing reduce remote ECG review workload and preserve arrhythmia detection sensitivity

Author:

Bisignani Giovanni,Cheung Jim W.,Rordorf Roberto,Kutyifa Valentina,Hofer Daniel,Berti Dana,Di Biase Luigi,Martens Eimo,Russo Vincenzo,Vitillo Paolo,Zoutendijk Marlies,Deneke Thomas,Köhler Irina,Schrader Jürgen,Upadhyay Gaurav

Abstract

IntroductionImplantable cardiac monitors (ICMs) provide long-term arrhythmia monitoring, but high rates of false detections increase the review burden. The new “SmartECG” algorithm filters false detections. Using large real-world data sets, we aimed to quantify the reduction in workload and any loss in sensitivity from this new algorithm.MethodsPatients with a BioMonitor IIIm and any device indication were included from three clinical projects. All subcutaneous ECGs (sECGs) transmitted via remote monitoring were classified by the algorithm as “true” or “false.” We quantified the relative reduction in workload assuming “false” sECGs were ignored. The remote monitoring workload from five hospitals with established remote monitoring routines was evaluated. Loss in sensitivity was estimated by testing a sample of 2000 sECGs against a clinical board of three physicians.ResultsOf our population of 368 patients, 42% had an indication for syncope or pre-syncope and 31% for cryptogenic stroke. Within 418.5 patient-years of follow-up, 143,096 remote monitoring transmissions contained 61,517 sECGs. SmartECG filtered 42.8% of all sECGs as “false,” reducing the number per patient-year from 147 to 84. In five hospitals, nine trained reviewers inspected on average 105 sECGs per working hour. This results in an annual working time per patient of 83 min without SmartECG, and 48 min with SmartECG. The loss of sensitivity is estimated as 2.6%. In the majority of cases where true arrhythmias were rejected, SmartECG classified the same type of arrhythmia as “true” before or within 3 days of the falsely rejected sECG.ConclusionSmartECG increases efficiency in long-term arrhythmia monitoring using ICMs. The reduction of workload by SmartECG is meaningful and the risk of missing a relevant arrhythmia due to incorrect filtering by the algorithm is limited.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3