Medicine-Based Evidence in Congenital Heart Disease: How Artificial Intelligence Can Guide Treatment Decisions for Individual Patients

Author:

Van den Eynde Jef,Manlhiot Cedric,Van De Bruaene Alexander,Diller Gerhard-Paul,Frangi Alejandro F.,Budts Werner,Kutty Shelby

Abstract

Built on the foundation of the randomized controlled trial (RCT), Evidence Based Medicine (EBM) is at its best when optimizing outcomes for homogeneous cohorts of patients like those participating in an RCT. Its weakness is a failure to resolve a clinical quandary: patients appear for care individually, each may differ in important ways from an RCT cohort, and the physician will wonder each time if following EBM will provide best guidance for this unique patient. In an effort to overcome this weakness, and promote higher quality care through a more personalized approach, a new framework has been proposed: Medicine-Based Evidence (MBE). In this approach, big data and deep learning techniques are embraced to interrogate treatment responses among patients in real-world clinical practice. Such statistical models are then integrated with mechanistic disease models to construct a “digital twin,” which serves as the real-time digital counterpart of a patient. MBE is thereby capable of dynamically modeling the effects of various treatment decisions in the context of an individual's specific characteristics. In this article, we discuss how MBE could benefit patients with congenital heart disease, a field where RCTs are difficult to conduct and often fail to provide definitive solutions because of a small number of subjects, their clinical complexity, and heterogeneity. We will also highlight the challenges that must be addressed before MBE can be embraced in clinical practice and its full potential can be realized.

Publisher

Frontiers Media SA

Subject

Cardiology and Cardiovascular Medicine

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3