Development of an interpretable machine learning-based intelligent system of exercise prescription for cardio-oncology preventive care: A study protocol

Author:

Gao Tianyu,Ren Hao,He Shan,Liang Deyi,Xu Yuming,Chen Kecheng,Wang Yufan,Zhu Yuxin,Dong Heling,Xu Zhongzhi,Chen Weiming,Cheng Weibin,Jing Fengshi,Tao Xiaoyu

Abstract

BackgroundCardiovascular disease (CVD) and cancer are the first and second causes of death in over 130 countries across the world. They are also among the top three causes in almost 180 countries worldwide. Cardiovascular complications are often noticed in cancer patients, with nearly 20% exhibiting cardiovascular comorbidities. Physical exercise may be helpful for cancer survivors and people living with cancer (PLWC), as it prevents relapses, CVD, and cardiotoxicity. Therefore, it is beneficial to recommend exercise as part of cardio-oncology preventive care.ObjectiveWith the progress of deep learning algorithms and the improvement of big data processing techniques, artificial intelligence (AI) has gradually become popular in the fields of medicine and healthcare. In the context of the shortage of medical resources in China, it is of great significance to adopt AI and machine learning methods for prescription recommendations. This study aims to develop an interpretable machine learning-based intelligent system of exercise prescription for cardio-oncology preventive care, and this paper presents the study protocol.MethodsThis will be a retrospective machine learning modeling cohort study with interventional methods (i.e., exercise prescription). We will recruit PLWC participants at baseline (from 1 January 2025 to 31 December 2026) and follow up over several years (from 1 January 2027 to 31 December 2028). Specifically, participants will be eligible if they are (1) PLWC in Stage I or cancer survivors from Stage I; (2) aged between 18 and 55 years; (3) interested in physical exercise for rehabilitation; (4) willing to wear smart sensors/watches; (5) assessed by doctors as suitable for exercise interventions. At baseline, clinical exercise physiologist certificated by the joint training program (from 1 January 2023 to 31 December 2024) of American College of Sports Medicine and Chinese Association of Sports Medicine will recommend exercise prescription to each participant. During the follow-up, effective exercise prescription will be determined by assessing the CVD status of the participants.Expected outcomesThis study aims to develop not only an interpretable machine learning model to recommend exercise prescription but also an intelligent system of exercise prescription for precision cardio-oncology preventive care.EthicsThis study is approved by Human Experimental Ethics Inspection of Guangzhou Sport University.Clinical trial registrationhttp://www.chictr.org.cn, identifier ChiCTR2300077887.

Publisher

Frontiers Media SA

Subject

Cardiology and Cardiovascular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3