Bibliometric evaluation of 2011–2021 publications on hydrogen sulfide in heart preservation research

Author:

Chen Mingcong,Zhou Qian,Wu Fei,Sun Fang,Meng Yang,Zhang Yang,Zhao Mingyi

Abstract

BackgroundHydrogen sulfide (H2S) is known for its unpleasant odor and severe toxicity. However, an in-depth study of H2S showed that it can be used as an important messenger, which can play important physiological and pathological roles in vitro and in vivo. In recent years, the application of H2S in the field of cardiac preservation has attracted the interest and attention of scholars worldwide. H2S plays an effective and protective role in cardiac ischemia/reperfusion injury through antioxidant, anti-inflammatory, and antiapoptotic mechanisms.ObjectiveThe purpose of this study is to analyze the current scientific achievements on the application of H2S in the field of cardiac preservation and to provide new ideas for further research.MethodsTS = (“hydrogen sulfide” OR “hydrogen sulfide”) AND TS = (“cardiac” OR “heart” OR “myocardium” OR “hearts”) AND TS = (“reperfusion” or “transplantation” or “implanted” or “transplant” or “implantation” or “migration” or “preservation” or “grafting” OR “ischemia” OR “perfusion” or “conservation” or “preserve” or “reservation”) AND DT = (Article OR Review) AND LA = (English) were used as search strategies for data collection from the Science Citation Index-Expanded database of the Web of Science Core Collection. CiteSpace 5.8. R3 and Microsoft Office Excel 2019 were used for data analysis.ResultsA total of 429 related articles were included, and the total number of articles showed a fluctuating upward trend. We used CiteSpace 5.8. R3 and Microsoft Excel 2019 to evaluate and visualize the results, analyzing institutions, countries, journals, authors, co-cited references, and keywords.ConclusionsAs increasing evidence shows that H2S plays an indispensable role in the field of cardiac preservation, its mechanistic research and clinical application may become the main focus of future research.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3