Advanced detection of coronary artery disease via deep learning analysis of plasma cytokine data

Author:

Shoaib Muhammad,Junaid Ahmad,Husnain Ghassan,Qadir Mansoor,Ghadi Yazeed Yasin,Askar S. S.,Abouhawwash Mohamed

Abstract

The 2017 World Health Organization Fact Sheet highlights that coronary artery disease is the leading cause of death globally, responsible for approximately 30% of all deaths. In this context, machine learning (ML) technology is crucial in identifying coronary artery disease, thereby saving lives. ML algorithms can potentially analyze complex patterns and correlations within medical data, enabling early detection and accurate diagnosis of CAD. By leveraging ML technology, healthcare professionals can make informed decisions and implement timely interventions, ultimately leading to improved outcomes and potentially reducing the mortality rate associated with coronary artery disease. Machine learning algorithms create non-invasive, quick, accurate, and economical diagnoses. As a result, machine learning algorithms can be employed to supplement existing approaches or as a forerunner to them. This study shows how to use the CNN classifier and RNN based on the LSTM classifier in deep learning to attain targeted “risk” CAD categorization utilizing an evolving set of 450 cytokine biomarkers that could be used as suggestive solid predictive variables for treatment. The two used classifiers are based on these “45” different cytokine prediction characteristics. The best Area Under the Receiver Operating Characteristic curve (AUROC) score achieved is (0.98) for a confidence interval (CI) of 95; the classifier RNN-LSTM used “450” cytokine biomarkers had a great (AUROC) score of 0.99 with a confidence interval of 0.95 the percentage 95, the CNN model containing cytokines received the second best AUROC score (0.92). The RNN-LSTM classifier considerably beats the CNN classifier regarding AUROC scores, as evidenced by a p-value smaller than 7.48 obtained via an independent t-test. As large-scale initiatives to achieve early, rapid, reliable, inexpensive, and accessible individual identification of CAD risk gain traction, robust machine learning algorithms can now augment older methods such as angiography. Incorporating 65 new sensitive cytokine biomarkers can increase early detection even more. Investigating the novel involvement of cytokines in CAD could lead to better risk detection, disease mechanism discovery, and new therapy options.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3