Using Latent Class Analysis to Identify Different Risk Patterns for Patients With Masked Hypertension

Author:

Fu Ming,Hu Xiangming,Yi Shixin,Sun Shuo,Zhang Ying,Feng Yingqing,Geng Qingshan,Zhou Yingling,Dong Haojian

Abstract

Background: There is controversy whether masked hypertension (MHT) requires additional intervention. The aim of this study is to evaluate whether MHT accompanied with high-risk metabolic syndrome (MetS), as the subphenotype, will have a different prognosis from low-risk MetS.Methods: We applied latent class analysis to identify subphenotypes of MHT, using the clinical and biological information collected from High-risk Cardiovascular Factor Screening and Chronic Disease Management Programme. We modeled the data, examined the relationship between subphenotypes and clinical outcomes, and further explored the impact of antihypertensive medication.Results: We included a total of 140 patients with MHT for analysis. The latent class model showed that the two-class (high/low-risk MetS) model was most suitable for MHT classification. The high-risk MetS subphenotype was characterized by larger waist circumference, lower HDL-C, higher fasting blood glucose and triglycerides, and prevalence of diabetes. After four years of follow-up, participants in subphenotype 1 had a higher non-major adverse cardiovascular event (MACE) survival probability than those in subphenotype 2 (P = 0.016). There was no interaction between different subphenotypes and the use of antihypertensive medications affecting the occurrence of MACE.Conclusions: We have identified two subphenotypes in MHT that have different metabolic characteristics and prognosis, which could give a clue to the importance of tracing the clinical correlation between MHT and metabolic risk factors. For patients with MHT and high-risk MetS, antihypertensive therapy may be insufficient.

Funder

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3