Deciphering Pro-angiogenic Transcription Factor Profiles in Hypoxic Human Endothelial Cells by Combined Bioinformatics and in vitro Modeling

Author:

Schmidt Arne,Fuchs Maximilian,Stojanović Stevan D.,Liang Chunguang,Schmidt Kevin,Jung Mira,Xiao Ke,Weusthoff Jan,Just Annette,Pfanne Angelika,Distler Jörg H. W.,Dandekar Thomas,Fiedler Jan,Thum Thomas,Kunz Meik

Abstract

BackgroundConstant supply of oxygen is crucial for multicellular tissue homeostasis and energy metabolism in cardiac tissue. As a first response to acute hypoxia, endothelial cells (ECs) promote recruitment and adherence of immune cells to the dysbalanced EC barrier by releasing inflammatory mediators and growth factors, whereas chronic hypoxia leads to the activation of a transcription factor (TF) battery, that potently induces expression of growth factors and cytokines including platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF). We report a hypoxia-minded, targeted bioinformatics approach aiming to identify and validate TFs that regulate angiogenic signaling.ResultsA comprehensive RNA-Seq dataset derived from human ECs subjected to normoxic or hypoxic conditions was selected to identify significantly regulated genes based on (i) fold change (normoxia vs. hypoxia) and (ii) relative abundancy. Transcriptional regulation of this gene set was confirmed via qPCR in validation experiments where HUVECs were subjected to hypoxic conditions for 24 h. Screening the promoter and upstream regulatory elements of these genes identified two TFs, KLF5 and SP1, both with a potential binding site within these regions of selected target genes. In vitro, siRNA experiments confirmed SP1- and KLF5-mediated regulation of identified hypoxia-sensitive endothelial genes. Next to angiogenic signaling, we also validated the impact of TFs on inflammatory signaling, both key events in hypoxic sensing. Both TFs impacted on inflammatory signaling since endogenous repression led to increased NF-κB signaling. Additionally, SP1 silencing eventuated decreased angiogenic properties in terms of proliferation and tube formation.ConclusionBy detailed in silico analysis of promoter region and upstream regulatory elements for a list of hypoxia-sensitive genes, our bioinformatics approach identified putative binding sites for TFs of SP or KLF family in vitro. This strategy helped to identify TFs functionally involved in human angiogenic signaling and therefore serves as a base for identifying novel RNA-based drug entities in a therapeutic setting of vascularization.

Publisher

Frontiers Media SA

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3