Development and prevention of ischemic contracture (“stone heart”) in the pig heart

Author:

Li Mei,Qin Zhi,Steen Erik,Terry Ann,Wang Bowen,Wohlfart Björn,Steen Stig,Arner Anders

Abstract

Stone heart (ischemic contracture) is a rare and serious condition observed in the heart after periods of warm ischemia. The underlying mechanisms are largely unknown and treatment options are lacking. In view of the possibilities for cardiac donation after circulatory death (DCD), introducing risks for ischemic damage, we have investigated stone heart in pigs. Following cessation of ventilation, circulatory death (systolic pressure <8 mmHg) occurred within 13.1 ± 1.2 min; and a stone heart, manifested with asystole, increased left ventricular wall thickness and stiffness, established after a further 17 ± 6 min. Adenosine triphosphate and phosphocreatine levels decreased by about 50% in the stone heart. Electron microscopy showed deteriorated structure with contraction bands, Z-line streaming and swollen mitochondria. Synchrotron based small angle X-ray scattering of trabecular samples from stone hearts revealed attachment of myosin to actin, without volume changes in the sarcomeres. Ca2+ sensitivity, determined in permeabilized muscle, was increased in stone heart samples. An in vitro model for stone heart, using isolated trabecular muscle exposed to hypoxia/zero glucose, exhibited the main characteristics of stone heart in whole animals, with a fall in high-energy phosphates and development of muscle contracture. The stone heart condition in vitro was significantly attenuated by the myosin inhibitor MYK-461 (Mavacamten). In conclusion, the stone heart is a hypercontracted state associated with myosin binding to actin and increased Ca2+ sensitivity. The hypercontractile state, once developed, is poorly reversible. The myosin inhibitor MYK-461, which is clinically approved for other indications, could be a promising venue for prevention.

Publisher

Frontiers Media SA

Subject

Cardiology and Cardiovascular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3