Deletion of the murine ortholog of human 9p21.3 locus promotes atherosclerosis by increasing macrophage proinflammatory activity

Author:

Kettunen Sanna,Ruotsalainen Anna-Kaisa,Örd Tiit,Suoranta Tuisku,Heikkilä Janne,Kaikkonen Minna U.,Laham-Karam Nihay,Ylä-Herttuala Seppo

Abstract

BackgroundSeveral genome-wide association studies have reported a risk locus for coronary artery disease (CAD) in the 9p21. 3 chromosomal region. This region encodes a lncRNA in the INK4 locus (ANRIL) and its genetic variance has a strong association with CAD, but its mechanisms in atherogenesis remain unclear.ObjectivesThis study aimed to investigate the role of the murine ortholog of human 9p21.3 locus in atherogenesis in hypercholesterolemic mice.MethodsMurine 9p21.3 ortholog knockout mice (Chr4Δ70kb/Δ70kb) were crossbred with Ldlr−/−ApoB100/100 mice, and atherosclerotic plaque size and morphology were analyzed on a standard or a high-fat diet (HFD). The hematopoietic cell-specific effect of Chr4Δ70kb/Δ70kb on atherosclerotic plaque development was studied via bone marrow (BM) transplantation, where Chr4Δ70kb/Δ70kb or wild-type BM was transplanted into Ldlr−/−ApoB100/100 mice. The role of Chr4Δ70kb/Δ70kb in macrophage M1/M2 polarization was studied. In addition, single-cell sequencing data from human and mouse atheroma were analyzed to show the expression profiles of ANRIL and its murine equivalent, Ak148321, in the plaques.ResultsBoth systemic and hematopoietic Chr4Δ70kb/Δ70kb increased atherosclerosis in Ldlr−/−ApoB100/100 mice after 12 weeks of HFD. The systemic Chr4Δ70kb/Δ70kb also elevated the number of circulating leukocytes. Chr4Δ70kb/Δ70kb BMDMs showed enhanced M1 polarization in vitro. Single-cell sequencing data from human and mouse atheroma revealed that ANRIL and Ak148321 were mainly expressed in the immune cells.ConclusionThese data demonstrate that both systemic and BM-specific deletion of the murine 9p21.3 risk locus ortholog promotes atherosclerosis and regulates macrophage pro-inflammatory activity, suggesting the inflammation-driven mechanisms of the risk locus on atherogenesis.

Publisher

Frontiers Media SA

Subject

Cardiology and Cardiovascular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3