Flow cytometry in the differential diagnosis of myelodysplastic neoplasm with low blasts and cytopenia of other causes

Author:

Plander Márk,Kányási Mária,Szendrei Tamás,Skrapits Judit,Timár Botond

Abstract

BackgroundMyelodysplastic neoplasms (MDS) are characterized by cytopenia, morphologic dysplasia, and genetic abnormalities. Multiparameter flow cytometry (FCM) is recommended in the diagnostic work-up of suspected MDS, but alone is not sufficient to establish the diagnosis. Our aim was to investigate the diagnostic power of FCM in a heterogeneous population of patients with cytopenia, excluding cases with increased blast count.MethodsWe analyzed bone marrow samples from 179 patients with cytopenia (58 MDS, 121 non-MDS) using a standardized 8-color FCM method. We evaluated the sensitivity, specificity, and accuracy of several simple diagnostic approaches, including Ogata score, extended Ogata score, the WHO and ELN iMDSFlow recommended “3 aberrations in two cell compartments method,” and the combination of the Ogata score and “3 aberrations in two cell compartments method.” The patients were followed until the diagnosis was confirmed, with a median follow-up of 2 months (range 0.2–27).ResultsThe combination of Ogata score and “3 aberrations in two cell compartments method” achieved the highest diagnostic accuracy (78%) with sensitivity and specificity 61% and 86%, respectively. When using only the “3 aberrations in two cell compartments method,” the accuracy was 77% with a sensitivity of 72% and a specificity of 79%. The most frequently observed etiologies among the false positive cases were substrate deficiencies, inflammation/infection, or toxic effects. MDS can be excluded in all these cases after a thorough clinical evaluation and a relatively short follow-up.ConclusionFCM remains an important but supplementary part in an integrated diagnostic process of MDS with low blasts. The combination of the Ogata score and the “3 aberrations in two cell compartments method” slightly improves accuracy compared to the detection of “3 aberrations in two cell compartments method” alone.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3