Author:
Ujfaludi Zsuzsanna,Kuthi Levente,Pankotai-Bodó Gabriella,Bankó Sarolta,Sükösd Farkas,Pankotai Tibor
Abstract
Routine molecular tumour diagnostics are augmented by DNA-based qualitative and quantitative molecular techniques detecting mutations of DNA. However, in the past decade, it has been unravelled that the phenotype of cancer, as it’s an extremely complex disease, cannot be fully described and explained by single or multiple genetic variants affecting only the coding regions of the genes. Moreover, studying the manifestation of these somatic mutations and the altered transcription programming—driven by genomic rearrangements, dysregulation of DNA methylation and epigenetic landscape—standing behind the tumorigenesis and detecting these changes could provide a more detailed characterisation of the tumour phenotype. Consequently, novel comparative cancer diagnostic pipelines, including DNA- and RNA-based approaches, are needed for a global assessment of cancer patients. Here we report, that by monitoring the expression patterns of key tumour driver genes by qPCR, the normal and the tumorous samples can be separated into distinct categories. Furthermore, we also prove that by examining the transcription signatures of frequently affected genes at 3p25, 3p21 and 9p21.3 genomic regions, the ccRCC (clear cell renal cell carcinoma) and non-tumorous kidney tissues can be distinguished based on the mRNA level of the selected genes. Our results open new diagnostics possibilities where the mRNA signatures of tumour drivers can supplement the DNA-based approaches providing a more precise diagnostics opportunity leading to determine more precise therapeutic protocols.
Funder
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
Magyar Tudományos Akadémia
Emberi Eroforrások Minisztériuma
Szegedi Tudományegyetem
Subject
Cancer Research,Oncology,General Medicine,Pathology and Forensic Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献